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The slow motion of a sphere in a rotating, viscous fluid 
By STEPHEN CHILDRESS 

Jet Propulsion Laboratory, California Institute of Technology* 

(Received 17 January 1961) 

The uniform, slow motion of a sphere in a viscous fluid is examined in the case 
where the undisturbed fluid rotates with constant angular velocity SZ and 
the axis of rotation is taken to coincide with the line of motion. The various 
modifications of the classical problem for small Reynolds numbers are discussed. 
The main analytical result is a correction to Stokes’s drag formula, valid for 
small values of the Reynolds number and Taylor number and tending to the 
classical Oseen correction as the last parameter tends to zero. The rotation of a 
free sphere relative to the fluid at infinity is also deduced. 

1. Introduction 
In  this paper we give a simple extension to rotating flows of the classical low- 

Reynolds-number theory for infinite three-dimensional regions. The perturbation 
method which is used is due to Kaplun & Lagerstrom (1957). A problem in 
magnetohydrodynamics, similar in many respects to that discussed here, has 
been treated by Chester (1957) and, using the methods of the present paper, by 
Chang (1960). The suggestion that this similarity should extend to the perturba- 
tion procedure was made by Maxworthy (1962). 

The following specific problem is examined. Consider a fluid of constant 
density p and kinematic viscosity v, which is in solid-body rotation with angular 
velocity SZ. A sphere of radius a moves with speed U along the axis of rotation, 
and is free to rotate about the same axis. An approximate description of the flow 
pattern is sought, which is valid in the asymptotic sense for small values of the 
Reynolds number Re = Uajv and Taylor number Ta = SZa2/v. Such an approxi- 
mation can be obtained (cf. 96)  by expansion with respect to R e  alone, with a 
new parameter a, a = 2(Ta/Re2)  = 2(SZv/U2), 

held fixed. The principal results of the present investigation may be summarized 
as follows. If D is the drag experienced by the sphere, and if w is the angular 
velocity of the sphere relative to the fluid at infinity, then the expansions with 

D/67rpvUa = 1 + h(a) Re + o(Re) ,  ( l a )  
respect to R e  are 

w/sZ = ~ ( a ) R e + o ( R e ) ,  ( 1 b )  

where the functions h(a) and ~ ( a )  are given by the definite integrals 

h(a) = - {(t2+4iat)g+(t2_4iat)a)(3tz- l ) d t ,  t s: 
* Now at Courant Institute of Mathematical Sciences, New York University 
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x(a) = - ::so’ {( t2+4iat)&- ( t2 -4 ia t ) ) } (3 t3 - t )d t .  ( 2 b )  

(Numerical values and series expansions are given below in $ 4 . )  
The derivation of (l), (2) is described in $52-4.7 In  $ 2  the main elements of 

the perturbation method are reviewed, in order to point out the modifications 
that are required to account for rotation. It is found that the effect of rotation is 
twofold. First, there is near the sphere an added acceleration caused by the 
Coriolis force. This acceleration is O(Ta) and therefore is here of higher order than 
the non-linear effect (the added acceleration due to the non-linear terms) which 
is O(Re) .  Secondly, in the outer flow field, a distance O(Re-l)  from the sphere, 
the Coriolis term is of the same order of magnitude as the viscous and convective 
terms and the perturbation caused by the sphere is consequently altered. This last 
effect changes the values of the velocity perturbation observed near the sphere, 
and therefore appears in the computation of the second-order velocity there as 
a change in the boundary conditions a t  ‘infinity’. To compute these new con- 
ditions (actually matching conditions) a Fourier representation of the outer 
solution will be used and is derived in § 3 .  Finally, in $4 ,  the computation of h 
and x is completed by showing how these numbers can be extracted from our 
partial knowledge of the flow field. 

In  $ 5  we consider briefly the effect of rotation upon the wake structure far 
from the sphere. It is shown that the perturbation there consists of symmetric 
diffusive wakes extending fore and aft of the sphere. The transverse dimension 
of these wakes grows as the one-third power of the distance, in contrast with the 
one-half power dependence of the viscous wave of the Oseen theory. 

2. Asymptotic expansions in Re 

dimensionless notation with reference velocity U and length a )  
The equations appropriate to the physical problem described in $ 1  are (in 

R e q . V q + V p + 2 T a i x q - V 2 q  = 0, (3a)  

v.q = 0. ( 3 b )  

( 3 c )  

q = i ,  p = O  when r = m .  ( 3 4  

Since the sphere is free to rotate about the axis of symmetry, the boundary 
conditions are q = ( a w / U ) i x r  when r = ( x ~ + Y ~ + ~ ) *  = 1 ;  

In  the above, the co-ordinate system moves with the sphere, and rotates with the 
undisturbed fluid so that the term in ( 3 a )  containing Tu has its origin in the 
Coriolis force experienced by a fluid element. The quantity p is defined by 

p = (a/pvU) b* - $ppa2a2(y2+ 22) ] ,  

where p *  is the pressure. In  (3c), w is the dimensional angular velocity of the 
sphere relative to the rotating co-ordinate system. This parameter is not known in 

f A n  earlier analysis by the author was devoted exclusively to  the drag correction. 
The relative rotation of a free sphere w&s subsequently deduced by Saffman (1963), to 
whom the author is indebted for permission to include his results in the present paper, 
and also for comments on a previous draft. 
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advance but will be determined (as a function of Re and Ta)  by the requirement 
that the torque on the sphere be zero. 

In  the present paper we seek to find an approximation to q , p  in r 2 1, valid 
for small Re, with the additional stipulation that T a  = Ta(Re) = O(Re2) = *aRe2. 
This can be accomplished with the help of known expansion procedures, since 
the rotating (a > 0) and non-rotating (a = 0) cases of our problem are very 
similar in form. Following Kaplun & Lagerstrom (1957), we shall consider inner 
and outer expansions in Re, having the respective forms 

q ( r ; R e )  = q,(r)+Req,(r)+o(Re)  (1 < r < co), (44 

q(r; Re) = i+Beq‘(F)+o(Re) (P > 01, (4 6 )  

where in ( 4 b )  the outer variables 2 = xRe, y” = yRe, z” = zRe are used. Expansions 
for the pressure are similar and will be omitted. If a > 0 inner and outer ex- 
pansions of the axial vorticity <, 

< =  i . V x q ,  
of the respective forms 

{ ( r ;  Re) = Re2C2(r)+o(Re2) (1 < r < co), ( 5 a )  

{(r; Re) = Re2<;(r) +o(Re2) (P > 0), ( 5 b )  
must also be considered, as will be apparent below. 

The leading terms qo, po can be shown to be solutions of Stokes’s problem, 
The construction of (4) and ( 5 )  will now be reviewed and proceeds as follows. 

Vp, - v2q, = 0, v .  q, = 0, (6a) 

p ,  = 0, qo = i when r = CQ, (6b) 

q o = O  when r =  1. (6c) 
In  particular the matching conditions (6b) are unchanged by rotation to this 
order. The inner boundary condition (6c) states that the sphere does not rotate 
differentially to this order. To see that this must be so, suppose that a term of 
order unity proportional to i x r is added to q, as defined above, so as to satisfy 
a boundary condition for differential rotation. The resulting term of order unity 
in the inner expansion of { must then be matched with a corresponding outer 
term. This clearly is not possible, since far from the sphere the perturbation is 
small and the fluid moves axially. In  order to satisfy the matching condition 
on 5, it  is therefore necessary to add to q, a second term which satisfies a null 
condition on the sphere and cancels the solid-body rotation at infinity. The sum 
of the two added terms thus provides a solution of the Stokes equations which 
represents the flow caused by a sphere spinning in a fluid a t  rest, and this requires 
a torque of order unity. Our previous condition, that the torque be zero to all 
orders in Re, eliminates this possibility and we conclude that qo must satisfy 
(6c). This is an obvious result a t  this stage, but essentially the same argument 
may be used for higher-order terms. 

The first-order outer terms q‘, p’ satisfy the Oseen equations, containing now 
- the Coriolis term 

as’+Vp’+aixqt-V2q’ a2 = 0, 
- 
V . q ‘  = 0. 
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The outer boundary conditions are 

q’= 0, p‘= 0 when P =  00, ( 7 c )  

and there is in addition amatching conditionat P = 0. There are several equivalent 
ways of stating this last matching condition. In  this paper we shall require that 
q’ have at i: = 0 the singularity of a ‘fundamental solution ’ of (7)  corresponding 
to a force equal to the Stokes drag of the sphere. Such a solution may be obtained 
formally by solving (7) with the right-hand side of (7a )  replaced by - 6742) i. 
That this is a sufficient condition on q’ can be seen by the following argument. 
The precise matching condition states that a certain part of go,  which dominates 
this term in some intermediate region where the matching condition is applied 
(the overlap domain), is cancelled there by a part of i + Req’. The common part 
of these two terms may be shown to be equal to a fundamental solution of the 
Stokes equations, corresponding as before to the Stokes drag. If we denote this 
common part by A, the matching condition then states that i+Req‘-A is 
bounded when ? is small, i.e. in a region where the Stokes equations approximate 
the Oseen equations. Thus the singularity is the same in either case. The physical 
meaning of this is that in the overlap domain the sphere has the same effect 
as a point disturbance. 

The inner terms of order Re satisfy 

Vp, - vzq, = - 4,. vq,, v.  q, = 0. ( 8 4  

The matching condition is obtained by writing 

i+Req’-A = Re{B(a)+o(l)} as P -+ 0, 

where B(a) is also dependent on the direction of? (cf. 94). Then it is required that 

lim q1 = B(a),  
R e 4  

where the co-ordinates lie in some overlap domain. The condition that the torque 
on the sphere vanishes to order Re inclusive implies, in the same way as before, 
that the term q, satisfies the null condition 

q l =  0 when r = 1. (8c) 

The first non-trivial term in the inner expansion of 6 is of order Re2, and there 
are two contributions. First, the Coriolis force associated with q, is of this order. 
Secondly, the outer term q‘ introduces, through the matching condition, a non- 
zero term of this order. Using ( 5 )  in the equation for the vorticity 

V2c2 = - ai. aq,/ax, (9a) 
lim c2(r) = C(a) ,  

Re-0 

say, in some overlap domain, where 
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From the above we may draw an important conclusion. To order Re in velocity 
and to order Re2 in 5, i.e. to first order in each case, the effects of rotation lie 
entirely in the appearance of the Coriolis term as a forcing term in ( 9  a ) ,  the altered 
matching condition ( S b ) ,  and the new matching condition (9b ) .  This means that, 
for the purpose of obtaining the inner flow field to these orders, and subsequently 
to carry out the computation of h and x, only an expansion of q' for small F is 
actually used to extract the quantities B(a)  and C(a). This will allow us to simplify 
the analysis considerably, since this expansion can be found, for example, directly 
from a Fourier representation of q'. We now turn to this problem. 

3. The fundamental solution 

introducing the three-dimensional Fourier transforms I'(k), IT (k) defined by 
We may solve ( 7 ) )  now with - 6776(?) i on the right-hand side of (7a ) ,  by 

( 1 l a )  

1 , -  

Substitution of ( 1  1)  in ( 7 )  leads formally to the system 
ik,r+ikIT +ai x r +k2r = - 674 (13a)  

for I' and IT. The cross-product of k and the first of these equations, taken twice, 
yields two equations which may be solved for I'. Thus 

k . r =  0, k = k,i+k2j+k3k', (12b)  

r(k) = -6n i- k,k) (k2  + ik,) - ak,(k x i )  

IT (k) = i/k2[67fk, + a(k x i )  . r]. (13b) 
In  order to prove that ( 1  l ) ,  (13)  define the outer terms we must show that (i) q' 

plus 6, times the fundamental solution of the Stokes equations is bounded in a 
neighbourhood of the origin; (ii) the boundary conditions (7c)  are satisfied; and 
(iii) the terms in ( 7 a )  and (7b )  exist and the equations are satisfied when F > 0. 
To show (iii) it suffices to consider the partial inversion of I' or rI with respect to 
k,. We use the theory of residues and evaluate the integrand at roots k, of 

which lie in a suitable half-plane. It is easily seen that a root of (14)  has non-zero 
imaginary part, uniformly on 0 < 6 6 k i+k:  6 00,. The residues corresponding 
to those roots which have positive imaginary part therefore vanish exponentially 
as ki + kz -+ 00 uniformly for x 2 E > 0, where e is arbitrarily small. The integral 
with respect to k,  and k, converges, along with all derivatives, absolutely, and 
(iii) may therefore be established from this representation. 

In  order to prove (i) and (ii), we first define r,, IT,, the Fourier transform of 
the Stokes solution ( A  - i)/Re (cf. $ 3 ) )  by 

(k2+ik1)2k2+a2k; = 0) (14)  

ikII,+ k2r, = - 6 7 4  (15a)  

k.r ,  = 0. (15b) 
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Thus (k2i - k,k)  ( ik ,  k4 - k: k2 + a2k:) + ak,  k4(k x i )  
( k2 + ik,)2 k6 + a2k: k4 -1, (16a)  

n: - II, = a(k x i ) . F / k 2 .  (16b) 

Ir - G M / k 2 (  1 + k ) ,  (17a) 
I Il - IIsl < N / k 2 (  1 + k ) .  (17b) 

r-r, = 6n 

It is seen from (16) that there are constants M ,  N such that, fora > 0,O < k < co, 
we have the estimates 

That q' and p' vanish at infinity follows from (1 7),  using the Riemann-Lebesgue 
lemma, and from the fact that the Stokes solution defined above vanishes there. 
Finally, it can be shown from a direct calculation (which we carry out in $4) 
that the integral of (I'-rS) eik-f with respect to k is bounded at the origin. 

4. Computation of h and x 
In  the present paragraph we shall show how the numbers h(a) and ~ ( a )  can 

be found from the Fourier representation of q'. In  doing so only a part of the 
inner expansion of contributing order need be considered, and we begin with 
several observations concerning this point. 

It is known from the results of Kaplun & Lagerstrom (1957), Chester (1962) and 
others that the Navier-Stokes and Oseen expansions of, for example, the drag 
agree to order Re inclusive for certain classes of solids. In  particular, for a sphere, 
that part of q, which is associated with the forcing term - q, . Vq, does not make 
a contribution to the drag, as can be seen from a symmetry argument. Let us 
call a flow field q odd if the axial component is odd in x. Then the symmetry 
argument states that in the axially symmetric problem under consideration an 
odd term in q, cannot alter the drag of a solid symmetric about x = 0. This 
eliminates not only the particular solution of (8a) ,  but also odd terms which are 
induced by the matching condition ( 8 b ) .  Similarly, in the inner term c2, a part 
which is odd in x cannot cause a solid symmetric about the plane x = 0 to rotate 
differentially. This eliminates from our discussion the part generated by the 
forcing term in (9a) ,  as well as odd terms induced by the matching condition 
(9 b). The computation of h and x therefore depends solely upon the homogeneous 
solutions of (8a) and (9a) which match with the even part of B and C, and satisfy 
the inner boundary condition. 

Now, by definition, 
(1P  7~ ) 1 (r - r,) eik.'dk = B(a) + O( i ) ,  

(i/8n3) i .  (k x r) eik.'dk = C(a) +of l), s 
as ? -+ 0. To evaluate the terms on the left we shall divide up the region of 
integration into two parts, 0 G k < ?-", and ii > d-", where 0 < rr < 1.1- Then, 
using (17),  we have 

x eik.'dk+ O(i1-") + O(P") (18) 
t This step was suggested to the author by a referee. 
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as f -+ 0. The second term on the right-hand side of (1  8) is an odd term, while the 
first is parallel to i. In  the limit there is obtained 

(k2 - kf ) (ik, k4 - kq k2 + a";) 
B(a) = i-- dk+ ..., 4n2 

where the dots indicate an odd remainder and integration is now over all k. 
The computation of C(a)  is similar and there results 

dk+ ..., 

where again the omitted term is odd. 
The passage from (19) to (1) is now straightforward. That part of q, which 

matches the even part of B is clearly proportional to q,, and there is a proportional 
increment in the drag. Thus his equal to the coefficient of i displayed on the right 
of (19a). That part of c2 which matches the even part of C will contributea 
torque unless i t  reduces to a constant, representing a solid-body rotation of the 
inner flow field with dimensionless angular velocity @e2aX(a), according to 
( l b ) .  It follows that the term displayed on the right of (19b) is equal to a~(a). 
The more useful expressions (2) given above may then be obtained from the 
integrals over k in (19) by the introduction of spherical co-ordinates and contour 
integration with respect to k. 

For 4a > 1 we have the expansions 

(20b) 
75 1 35 1 45 1 +...). 

For values of a between 0 and 1, tables 1 and 2 may be used. It is interesting 
to note that, for sufficiently small values of a, the effect of rotation is actually to 

U 

0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 

h(a) 
0.375 
0.367 
0.359 
0.356 
0.356 
0.360 
0.365 
0.371 

a 

0.40 
0.45 
0.50 
0-60 
0.70 
0.80 
1.0 
- 

TABLE 1 

h ( 4  
0-379 
0.386 
0.395 
0.41 1 
0.429 
0.445 
0.479 

U - x(a) U - X ( 4  
0 0.375 0.50 0.313 
0.10 0.375 0.67 0.287 
0.23 0.367 0.83 0.266 
0.37 0.337 1.00 0.248 

TABLE 2 
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decrease the drag, the minimum occurring for a = 0.175 approximately. The 
behaviour of h(a) near a = 0 is given by the expansion 

h(a) = g+3a2ioga+o(a410ga). (21) 

The first term on the right of (21) corresponds, of course, to the classical Oseen 
correction. 

We remark also that, according to (20a), when a + 00, (la) may be written 
in the form D 2c 

- = 1+--Tat+O(Ta) ,  
DS 21n 

where D, is the Stokes drag and c = Ds/pUva. It can be shown that (22) is valid 
also for any finite solid which is symmetric about the axis of rotation. This result 
may be compared with a formula obtained by Chang (1 960) for a related problem 
in magnet ohydrod ynamics . 

5. The wake structure 
The structure of the fundamental solution derived in $3  is far more compli- 

cated in the rotating case than in the non-rotating case. However, if we restrict 
attention to the flow field at large distances, i.e. when ? 9 1, the main effect of 
the Coriolis force is quite easily seen. The peculiar effects of rotation on the 
flow field at large distances are most obvious from the approximate form of the 
partial-differential equation which is governing there. The full equation, satis- 
fied in P > 0 by the velocity components and pressure, follows from (14) and is 

v2 - (- Vz-% a )  (- v2-- ;z)$+azj.P az$ = 0. 
(23) 

If a = 0, it  is well known that a decomposition or splitting of the solution occurs, 
and that part of the solution which is identified with the viscous wake satisfies 

when P B 1. If a > 0, however, the splitting does not occur and the entire wake 
structure is described by solutions of the reduced equation 

when i. B 1. Therefore, at large distances the flow pattern is entirely changed by 
the action of the Coriolis force. For example, we note that (25) admits solutions 
which are symmetric in 2, while (24) does not; also, the width of the wake grows 
as 5 3  rather than as 2*. 

In  order to determine the approximation to the fundamental solution we return 
now to the Fourier representation. If the velocity is expanded for large 121, the 
dominant contribution to the integral with respect to k, occurs when the imagin- 
ary part of the root of (14) is smallest, and this implies that a neighbourhood of the 
origin k = 0 is to be considered. It is next seen that in order that k be small and 
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simultaneously lie on the surface defined by ( l a ) ,  k, must be of the order of the 
cube of the transverse components. If this approximation is made in ( l l a ) ,  
there results for the axial component of velocity 

1 
= - ~ P(q) +0(?-1), 

21q 
where 

F(q)  = 3 S m  s2e-53JO(qs)ds, 7 = (g2+.Z2)4 (a/lZl)*. 
0 

The function P(q) is shown in figure 1. Note that over a portion of the wake the 
speed exceeds the free-stream speed. 

0 1 
P 

FIGURE 1. Axial velocity perturbation in the distant wake. 

6.  Discussion 
The limit-process expansions (4) ,  (5) have been introduced with the specific 

intention of finding how the rotation of the fluid affects the classical Stokes 
flow. Therefore, in a definite sense the present theory is ‘higher order’ and the 
effects which are calculated are in the same sense ‘small’ effects. (Of course, the 
relation between the Stokes and Oseen flows is such that arbitrarily small 
rotation alters the perturbation at large distances.) However, the freedom which 
we have in the choice of Ta(Re) and the stretching of the co-ordinates would 
appear to offer more than one possible form for these results. We can investigate 
this question in physical terms by reducing all small terms to the role of forcing 
terms in Stokes’s problem. 

If we want to assess the effect of a forcing term, however small, we must 
consider a t  the same time the size of the region over which the equation is defined. 
The relationship between the order of magnitude of the forcing term proper, and 
the order of the integrated eflect of the term, is by no means obvious in many 
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physical problems involving infinite regions. In  the present example, however, 
the following simple argument may be used. Let L3 denote the volume of a closed 
region containing the sphere (e.g.  another sphere). Consider now the convective 
(Oseen) term, the Coriolis term, and the viscous stress term in (3u). The integrated 
order of magnitude of these terms, taking into account the number of derivatives 
involved, is L 2 R e ,  L3Tu, and L, respectively. We can study the solutions in the 
most general way if these orders are all the same, and, if this is so, then 

L = O(Re-l) ,  T a  = O(Re2).  

Thus the stretching factor and the parameter a emerge from the desire that the 
integrated effects of all perturbations of the Stokes flow, over a region where the 
latter is valid, be comparable. We can simplify in various ways, by taking a 
small or large, without invalidating the general results, although in the case of 
a large it is necessary to require that 

T a  = &Re2 < 1 (26 )  

in order to justify the division of the approximation into inner and outer expan- 
sions. (It is now apparent that, whereas it was convenient to introduce a as a 
fixed positive parameter, it  is actually sufficient to require that (26 )  be satisfied.) 

It is seen from these considerations that, in order to examine the effect of a 
dominant Coriolis term in so far as the outer problem is concerned, we may assume 
initially that a is large. If a is also so large that a R e  B 1, then this approximation 
can be made in the inner problem as well, so that with no further restrictions on 
Ta the governing equations may be taken to be 

Vp+2Tuixq -V2q ,  V . q  = 0. (27) 

For these ‘Stokes ’ equations the present paper provides approximation valid 
for Tu small. If T u  is not small, then the effect of the Coriolis force is of 
order unity over the inner flow field, and (27) must be solved with the exact 
boundary condition on the sphere. 

The author would like to acknowledge several helpful discussions with Dr T. 
Maxworthy, whose measurements of D and o) (to be reported) stimulated the 
present work. The author is also indebted to a referee, whose comments led to 
several improvements in this paper. 
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